Modeling the dynamic epigenome: from histone modifications towards self-organizing chromatin.
نویسندگان
چکیده
Epigenetic mechanisms play an important role in regulating and stabilizing functional states of living cells. However, in spite of an increasing amount of experimental data, models of transcriptional regulation by epigenetic processes, in particular by histone modifications, are rather rare. In this article, we focus on epigenetic modes of transcriptional regulation based on histone modifications and their potential dynamical interplay with DNA methylation and higher-order chromatin structure. The main purpose of this article is to review recent formal modeling approaches to the dynamics and propagation of histone modifications and to relate them to available experimental data. We evaluate their assumptions with respect to recruitment of relevant modifiers, establishment and processing of modifications, and compare the emerging stability properties and memory effects. Theoretical predictions that await experimental validation are highlighted and potential extensions of these models towards multiscale models of self-organizing chromatin are discussed.
منابع مشابه
Epigenetic Regulation of the Cardiovascular System: Introduction to a Review Series Epigenome Mapping in Normal and Disease States Epigenetic Reprogramming for Cardiovascular Regeneration Chromatin Remodeling in Cardiovascular Development and Physiology
Epigenomes are comprised, in part, of all genome-wide chromatin modifications, including DNA methylation and histone modifications. Unlike the genome, epigenomes are dynamic during development and differentiation to establish and maintain cell type–specific gene expression states that underlie cellular identity and function. Chromatin modifications are particularly labile, providing a mechanism...
متن کاملEpigenome mapping in normal and disease States.
Epigenomes are comprised, in part, of all genome-wide chromatin modifications, including DNA methylation and histone modifications. Unlike the genome, epigenomes are dynamic during development and differentiation to establish and maintain cell type-specific gene expression states that underlie cellular identity and function. Chromatin modifications are particularly labile, providing a mechanism...
متن کاملEpigenetic Modifications of Host Genes Induced by Bacterial Infection
Introduction: Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or coordinate cellular responses to external stimulus. While epigenetics is of fundamental importance in eukaryotes, it plays a different role in bacteria. This article uncovers the most important recent data on how bacteria can alter epigenetic marks and can also contribute t...
متن کاملThe Epigenomics of Embryonic Stem Cell Differentiation
Embryonic stem cells (ESCs) possess an open and highly dynamic chromatin landscape, which underlies their plasticity and ultimately maintains ESC pluripotency. The ESC epigenome must not only maintain the transcription of pluripotency-associated genes but must also, through gene priming, facilitate rapid and cell type-specific activation of developmental genes upon lineage commitment. Trans-gen...
متن کاملVitamin D and the epigenome
Epigenetic mechanisms play a crucial role in regulating gene expression. The main mechanisms involve methylation of DNA and covalent modifications of histones by methylation, acetylation, phosphorylation, or ubiquitination. The complex interplay of different epigenetic mechanisms is mediated by enzymes acting in the nucleus. Modifications in DNA methylation are performed mainly by DNA methyltra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Epigenomics
دوره 4 2 شماره
صفحات -
تاریخ انتشار 2012